Serveur d'exploration Phytophthora

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Tethering of Multi-Vesicular Bodies and the Tonoplast to the Plasma Membrane in Plants.

Identifieur interne : 000374 ( Main/Exploration ); précédent : 000373; suivant : 000375

Tethering of Multi-Vesicular Bodies and the Tonoplast to the Plasma Membrane in Plants.

Auteurs : Kai Tao [États-Unis] ; Justin R. Waletich [États-Unis] ; Hua Wise [États-Unis] ; Felipe Arredondo [États-Unis] ; Brett M. Tyler [États-Unis]

Source :

RBID : pubmed:31396242

Abstract

Tethering of the plasma membrane (PM) and many organelles to the endoplasmic reticulum (ER) for communication and lipid exchange has been widely reported. However, despite growing interest in multi-vesicular bodies (MVBs) as possible sources of exosomes, tethering of MVBs to the PM has not been reported. Here we show that MVBs and the vacuolar membrane (tonoplast) could be tethered to the PM (PM-MVB/TP tethering) by artificial protein fusions or bimolecular fluorescence complementation (BiFC) complexes that contain a peripheral membrane protein that binds the PM and also a protein that binds MVBs or the tonoplast. PM-binding proteins capable of participating in PM-MVB/TP tethering included StRem1.3, BIK1, PBS1, CPK21, and the PtdIns(4)-binding proteins FAPP1 and Osh2. MVB/TP-binding proteins capable of participating in tethering included ARA6, ARA7, RHA1, RABG3f, and the PtdIns(3)P-binding proteins Vam7p and Hrs-2xFYVE. BiFC complexes or protein fusions capable of producing PM-MVB/TP tethering were visualized as large well-defined patches of fluorescence on the PM that could displace PM proteins such as AtFlotillin1 and also could displace cytoplasmic proteins such as soluble GFP. Furthermore, we identified paralogous ubiquitin E3 ligase proteins, SAUL1 (AtPUB44), and AtPUB43 that could produce PM-MVB/TP tethering. SAUL1 and AtPUB43 could produce tethering in uninfected tissue when paired with MVB-binding proteins or when their E3 ligase domain was deleted. When Nicotiana benthamiana leaf tissue was infected with Phytophthora capsici, full length SAUL1 and AtPUB43 localized in membrane patches consistent with PM-MVB/TP tethering. Our findings define new tools for studying PM-MVB/TP tethering and its possible role in plant defense.

Significance Statement

Although not previously observed, the tethering of multi-vesicular bodies to the plasma membrane is of interest due to the potential role of this process in producing exosomes in plants. Here we describe tools for observing and manipulating the tethering of multi-vesicular bodies and the tonoplast to the plant plasma membrane, and describe two plant proteins that may naturally regulate this process during infection.


DOI: 10.3389/fpls.2019.00636
PubMed: 31396242
PubMed Central: PMC6662526


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Tethering of Multi-Vesicular Bodies and the Tonoplast to the Plasma Membrane in Plants.</title>
<author>
<name sortKey="Tao, Kai" sort="Tao, Kai" uniqKey="Tao K" first="Kai" last="Tao">Kai Tao</name>
<affiliation wicri:level="2">
<nlm:affiliation>Molecular and Cellular Biology Program, Oregon State University, Corvallis, OR, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Molecular and Cellular Biology Program, Oregon State University, Corvallis, OR</wicri:regionArea>
<placeName>
<region type="state">Oregon</region>
</placeName>
</affiliation>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR</wicri:regionArea>
<placeName>
<region type="state">Oregon</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Waletich, Justin R" sort="Waletich, Justin R" uniqKey="Waletich J" first="Justin R" last="Waletich">Justin R. Waletich</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR</wicri:regionArea>
<placeName>
<region type="state">Oregon</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Wise, Hua" sort="Wise, Hua" uniqKey="Wise H" first="Hua" last="Wise">Hua Wise</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR</wicri:regionArea>
<placeName>
<region type="state">Oregon</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Arredondo, Felipe" sort="Arredondo, Felipe" uniqKey="Arredondo F" first="Felipe" last="Arredondo">Felipe Arredondo</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR</wicri:regionArea>
<placeName>
<region type="state">Oregon</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Tyler, Brett M" sort="Tyler, Brett M" uniqKey="Tyler B" first="Brett M" last="Tyler">Brett M. Tyler</name>
<affiliation wicri:level="2">
<nlm:affiliation>Molecular and Cellular Biology Program, Oregon State University, Corvallis, OR, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Molecular and Cellular Biology Program, Oregon State University, Corvallis, OR</wicri:regionArea>
<placeName>
<region type="state">Oregon</region>
</placeName>
</affiliation>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR</wicri:regionArea>
<placeName>
<region type="state">Oregon</region>
</placeName>
</affiliation>
<affiliation wicri:level="2">
<nlm:affiliation>Center for Genome Research and Biocomputing, Oregon State University, Corvallis, OR, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Center for Genome Research and Biocomputing, Oregon State University, Corvallis, OR</wicri:regionArea>
<placeName>
<region type="state">Oregon</region>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2019">2019</date>
<idno type="RBID">pubmed:31396242</idno>
<idno type="pmid">31396242</idno>
<idno type="doi">10.3389/fpls.2019.00636</idno>
<idno type="pmc">PMC6662526</idno>
<idno type="wicri:Area/Main/Corpus">000410</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000410</idno>
<idno type="wicri:Area/Main/Curation">000410</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000410</idno>
<idno type="wicri:Area/Main/Exploration">000410</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Tethering of Multi-Vesicular Bodies and the Tonoplast to the Plasma Membrane in Plants.</title>
<author>
<name sortKey="Tao, Kai" sort="Tao, Kai" uniqKey="Tao K" first="Kai" last="Tao">Kai Tao</name>
<affiliation wicri:level="2">
<nlm:affiliation>Molecular and Cellular Biology Program, Oregon State University, Corvallis, OR, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Molecular and Cellular Biology Program, Oregon State University, Corvallis, OR</wicri:regionArea>
<placeName>
<region type="state">Oregon</region>
</placeName>
</affiliation>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR</wicri:regionArea>
<placeName>
<region type="state">Oregon</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Waletich, Justin R" sort="Waletich, Justin R" uniqKey="Waletich J" first="Justin R" last="Waletich">Justin R. Waletich</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR</wicri:regionArea>
<placeName>
<region type="state">Oregon</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Wise, Hua" sort="Wise, Hua" uniqKey="Wise H" first="Hua" last="Wise">Hua Wise</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR</wicri:regionArea>
<placeName>
<region type="state">Oregon</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Arredondo, Felipe" sort="Arredondo, Felipe" uniqKey="Arredondo F" first="Felipe" last="Arredondo">Felipe Arredondo</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR</wicri:regionArea>
<placeName>
<region type="state">Oregon</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Tyler, Brett M" sort="Tyler, Brett M" uniqKey="Tyler B" first="Brett M" last="Tyler">Brett M. Tyler</name>
<affiliation wicri:level="2">
<nlm:affiliation>Molecular and Cellular Biology Program, Oregon State University, Corvallis, OR, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Molecular and Cellular Biology Program, Oregon State University, Corvallis, OR</wicri:regionArea>
<placeName>
<region type="state">Oregon</region>
</placeName>
</affiliation>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR</wicri:regionArea>
<placeName>
<region type="state">Oregon</region>
</placeName>
</affiliation>
<affiliation wicri:level="2">
<nlm:affiliation>Center for Genome Research and Biocomputing, Oregon State University, Corvallis, OR, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Center for Genome Research and Biocomputing, Oregon State University, Corvallis, OR</wicri:regionArea>
<placeName>
<region type="state">Oregon</region>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Frontiers in plant science</title>
<idno type="ISSN">1664-462X</idno>
<imprint>
<date when="2019" type="published">2019</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Tethering of the plasma membrane (PM) and many organelles to the endoplasmic reticulum (ER) for communication and lipid exchange has been widely reported. However, despite growing interest in multi-vesicular bodies (MVBs) as possible sources of exosomes, tethering of MVBs to the PM has not been reported. Here we show that MVBs and the vacuolar membrane (tonoplast) could be tethered to the PM (PM-MVB/TP tethering) by artificial protein fusions or bimolecular fluorescence complementation (BiFC) complexes that contain a peripheral membrane protein that binds the PM and also a protein that binds MVBs or the tonoplast. PM-binding proteins capable of participating in PM-MVB/TP tethering included StRem1.3, BIK1, PBS1, CPK21, and the PtdIns(4)-binding proteins FAPP1 and Osh2. MVB/TP-binding proteins capable of participating in tethering included ARA6, ARA7, RHA1, RABG3f, and the PtdIns(3)P-binding proteins Vam7p and Hrs-2xFYVE. BiFC complexes or protein fusions capable of producing PM-MVB/TP tethering were visualized as large well-defined patches of fluorescence on the PM that could displace PM proteins such as AtFlotillin1 and also could displace cytoplasmic proteins such as soluble GFP. Furthermore, we identified paralogous ubiquitin E3 ligase proteins, SAUL1 (AtPUB44), and AtPUB43 that could produce PM-MVB/TP tethering. SAUL1 and AtPUB43 could produce tethering in uninfected tissue when paired with MVB-binding proteins or when their E3 ligase domain was deleted. When
<i>Nicotiana benthamiana</i>
leaf tissue was infected with
<i>Phytophthora capsici</i>
, full length SAUL1 and AtPUB43 localized in membrane patches consistent with PM-MVB/TP tethering. Our findings define new tools for studying PM-MVB/TP tethering and its possible role in plant defense.</div>
<div type="abstract" xml:lang="en">
<p>
<b>Significance Statement</b>
</p>
<p>Although not previously observed, the tethering of multi-vesicular bodies to the plasma membrane is of interest due to the potential role of this process in producing exosomes in plants. Here we describe tools for observing and manipulating the tethering of multi-vesicular bodies and the tonoplast to the plant plasma membrane, and describe two plant proteins that may naturally regulate this process during infection.</p>
</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="PubMed-not-MEDLINE" Owner="NLM">
<PMID Version="1">31396242</PMID>
<DateRevised>
<Year>2020</Year>
<Month>10</Month>
<Day>01</Day>
</DateRevised>
<Article PubModel="Electronic-eCollection">
<Journal>
<ISSN IssnType="Print">1664-462X</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>10</Volume>
<PubDate>
<Year>2019</Year>
</PubDate>
</JournalIssue>
<Title>Frontiers in plant science</Title>
<ISOAbbreviation>Front Plant Sci</ISOAbbreviation>
</Journal>
<ArticleTitle>Tethering of Multi-Vesicular Bodies and the Tonoplast to the Plasma Membrane in Plants.</ArticleTitle>
<Pagination>
<MedlinePgn>636</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.3389/fpls.2019.00636</ELocationID>
<Abstract>
<AbstractText>Tethering of the plasma membrane (PM) and many organelles to the endoplasmic reticulum (ER) for communication and lipid exchange has been widely reported. However, despite growing interest in multi-vesicular bodies (MVBs) as possible sources of exosomes, tethering of MVBs to the PM has not been reported. Here we show that MVBs and the vacuolar membrane (tonoplast) could be tethered to the PM (PM-MVB/TP tethering) by artificial protein fusions or bimolecular fluorescence complementation (BiFC) complexes that contain a peripheral membrane protein that binds the PM and also a protein that binds MVBs or the tonoplast. PM-binding proteins capable of participating in PM-MVB/TP tethering included StRem1.3, BIK1, PBS1, CPK21, and the PtdIns(4)-binding proteins FAPP1 and Osh2. MVB/TP-binding proteins capable of participating in tethering included ARA6, ARA7, RHA1, RABG3f, and the PtdIns(3)P-binding proteins Vam7p and Hrs-2xFYVE. BiFC complexes or protein fusions capable of producing PM-MVB/TP tethering were visualized as large well-defined patches of fluorescence on the PM that could displace PM proteins such as AtFlotillin1 and also could displace cytoplasmic proteins such as soluble GFP. Furthermore, we identified paralogous ubiquitin E3 ligase proteins, SAUL1 (AtPUB44), and AtPUB43 that could produce PM-MVB/TP tethering. SAUL1 and AtPUB43 could produce tethering in uninfected tissue when paired with MVB-binding proteins or when their E3 ligase domain was deleted. When
<i>Nicotiana benthamiana</i>
leaf tissue was infected with
<i>Phytophthora capsici</i>
, full length SAUL1 and AtPUB43 localized in membrane patches consistent with PM-MVB/TP tethering. Our findings define new tools for studying PM-MVB/TP tethering and its possible role in plant defense.</AbstractText>
<AbstractText Label="Significance Statement" NlmCategory="UNASSIGNED">Although not previously observed, the tethering of multi-vesicular bodies to the plasma membrane is of interest due to the potential role of this process in producing exosomes in plants. Here we describe tools for observing and manipulating the tethering of multi-vesicular bodies and the tonoplast to the plant plasma membrane, and describe two plant proteins that may naturally regulate this process during infection.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Tao</LastName>
<ForeName>Kai</ForeName>
<Initials>K</Initials>
<AffiliationInfo>
<Affiliation>Molecular and Cellular Biology Program, Oregon State University, Corvallis, OR, United States.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, United States.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Waletich</LastName>
<ForeName>Justin R</ForeName>
<Initials>JR</Initials>
<AffiliationInfo>
<Affiliation>Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, United States.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Wise</LastName>
<ForeName>Hua</ForeName>
<Initials>H</Initials>
<AffiliationInfo>
<Affiliation>Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, United States.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Arredondo</LastName>
<ForeName>Felipe</ForeName>
<Initials>F</Initials>
<AffiliationInfo>
<Affiliation>Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, United States.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Tyler</LastName>
<ForeName>Brett M</ForeName>
<Initials>BM</Initials>
<AffiliationInfo>
<Affiliation>Molecular and Cellular Biology Program, Oregon State University, Corvallis, OR, United States.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, United States.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Center for Genome Research and Biocomputing, Oregon State University, Corvallis, OR, United States.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2019</Year>
<Month>05</Month>
<Day>22</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Switzerland</Country>
<MedlineTA>Front Plant Sci</MedlineTA>
<NlmUniqueID>101568200</NlmUniqueID>
<ISSNLinking>1664-462X</ISSNLinking>
</MedlineJournalInfo>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">BiFC</Keyword>
<Keyword MajorTopicYN="N">multi-vesicular bodies</Keyword>
<Keyword MajorTopicYN="N">plasma membrane</Keyword>
<Keyword MajorTopicYN="N">tethering</Keyword>
<Keyword MajorTopicYN="N">tonoplast</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2019</Year>
<Month>01</Month>
<Day>16</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2019</Year>
<Month>04</Month>
<Day>26</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2019</Year>
<Month>8</Month>
<Day>10</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2019</Year>
<Month>8</Month>
<Day>10</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2019</Year>
<Month>8</Month>
<Day>10</Day>
<Hour>6</Hour>
<Minute>1</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">31396242</ArticleId>
<ArticleId IdType="doi">10.3389/fpls.2019.00636</ArticleId>
<ArticleId IdType="pmc">PMC6662526</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Plant Cell. 1999 Apr;11(4):587-600</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10213780</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2000 Jun;5(6):1003-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10911994</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 2000 Oct 1;351(Pt 1):19-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11001876</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2001 Feb;6(2):66-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11173290</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2001 Mar 2;291(5509):1793-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11230696</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Cell Biol. 2001 Jul;3(7):613-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11433291</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2001 Nov 30;294(5548):1881-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11729306</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Traffic. 2002 Jun;3(6):416-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12010460</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Immunol. 2002 Aug;2(8):569-79</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12154376</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2002 Oct;50(3):463-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12369622</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2002 Dec;130(4):1807-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12481064</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Biochem. 2003;72:395-447</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12651740</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2003 May;15(5):1057-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12724533</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Cell Biol. 2003 Sep;13(9):463-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12946625</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Physiol. 2003 Dec;44(12):1341-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14701929</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2004 Jan 23;116(2):153-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14744428</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2004 Mar;16(3):672-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14973159</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2004 Oct 22;279(43):44683-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15271978</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Motil Cytoskeleton. 2004 Oct;59(2):79-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15362112</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biol. 2004 Nov 8;167(3):531-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15534004</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2005 Mar;137(3):901-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15728336</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Plant Biol. 2005 Aug 04;5:13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16080795</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2006 Mar;18(3):715-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16461582</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Sci. 2006 May 1;119(Pt 9):1679-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16636069</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2006 Sep;47(5):687-700</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16856980</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2006 Dec 1;281(48):37091-101</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16984909</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2006 Oct 12;443(7112):651-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17035995</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Protoc. 2006;1(2):641-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17406292</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Protoc. 2006;1(3):1278-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17406412</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Protoc. 2007;2(7):1565-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17585298</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2007 Dec;145(4):1371-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17905861</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2007 Nov;145(3):593-600</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17984200</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2008 Jan;20(1):101-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18239134</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2008 May;20(5):1330-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18492870</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2008 Jul;20(7):1930-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18621946</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2009 Jan;57(2):356-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18785997</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2008 Dec;148(4):1897-907</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18945931</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Mol Cell Biol. 2009 Sep;10(9):597-608</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19696797</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Signal Behav. 2007 Jan;2(1):4-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19704795</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Histol Histopathol. 2010 Jan;25(1):99-112</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19924646</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2010 Jan 5;107(1):496-501</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20018686</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biol. 2010 Jan 25;188(2):253-69</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20100911</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2010 May;1798(5):975-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20116363</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2010 Apr;22(4):1333-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20424177</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2010 Apr 30;141(3):497-508</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20434987</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2010 Apr;22(4):1344-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20435907</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2010 Jul 23;285(30):23165-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20498364</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Cell Biol. 2010 Aug;22(4):528-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20541925</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2010 Jul 23;142(2):284-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20655469</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Signal Behav. 2010 Oct;5(10):1272-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20855950</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2011 Jan;62(2):775-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20956359</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2011 May 27;286(21):18650-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21454700</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant. 2011 Sep;4(5):854-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21493745</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Signal Behav. 2010 Dec;5(12):1568-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21512325</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Cell Biol. 2011 Jun 12;13(7):853-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21666683</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2011 Aug;156(4):1783-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21697507</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 2011 Jul 26;21(14):1197-203</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21757352</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2011 Aug 31;30(17):3481-500</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21878991</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2011 Sep;23(9):3463-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21934143</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Traffic. 2012 Feb;13(2):338-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22004564</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechniques. 2011 Nov;51(5):313-4, 316, 318 passim</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22054544</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2011;6(11):e27217</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22076138</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2011 Nov;23(11):4025-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22080600</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Plant Biol. 2012 Apr 24;12:54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22530652</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2012 May 23;485(7399):465-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22622570</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2012 Jul;159(3):1013-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22635117</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2012 Jul 10;109(28):11443-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22733775</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Cell Dev Biol. 2012;28:337-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22831642</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2012 Oct;160(2):624-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22855937</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Sci. 2012 Aug 1;125(Pt 15):3511-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22935651</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2012 Nov 16;287(47):39982-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23027878</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 2012 Nov 6;22(21):2048-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23041194</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2013 Nov;1833(11):2526-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23380708</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2013 May 17;288(20):14332-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23569203</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2014 Jan;77(2):322-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24147788</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2014 Jan;164(1):340-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24225654</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2013 Dec;16(6):726-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24246229</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Sci. 2014 Mar 1;127(Pt 5):947-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24424025</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2014 Feb 19;5:37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24600457</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2014 Apr 8;26(4):1698-1711</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24714763</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2014 May 13;26(5):2080-2097</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24824487</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 2014 Jun 16;24(12):1383-1389</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24881875</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biol. 2014 Jun 23;205(6):759-69</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24958771</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2014 Nov;80(3):553-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25187041</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Cell Dev Biol. 2014;30:255-89</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25288114</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2014 Dec;27(12):1379-89</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25387135</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO Rep. 2015 Jan;16(1):24-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25488940</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2015 Jan;27(1):243-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25634989</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Physiol. 2015;77:57-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25668017</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2015 Apr 09;6:234</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25914711</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biol. 2015 Jul 20;210(2):181-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26169352</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Biotechnol J. 2016 Mar;14(3):875-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26214158</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Sci. 2015 Aug 15;128(16):2957-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26240175</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 2015 Sep 21;25(18):2361-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26320950</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2016 Mar;1858(3):607-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26431786</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2015 Sep 23;6:766</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26442078</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Cell Dev Biol. 2015 Sep 25;3:56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26442263</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Transl Neurodegener. 2015 Sep 30;4:18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26448863</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2016 Jan;29(1):69-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26505534</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant. 2016 Jun 6;9(6):774-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26836198</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2016 Aug;1861(8 Pt B):874-879</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26898183</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2016 Apr 29;67:309-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27128466</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Physiol. 2016 Sep;57(9):1854-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27318282</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Plants. 2016 Jun 20;2:16089</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27322096</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Rep. 2016 Oct 19;6:35656</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27759093</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2017 Jan;173(1):728-741</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27837092</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Cell Biol. 2017 Mar;27(3):172-188</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27979573</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Prog Lipid Res. 2017 Apr;66:30-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28342835</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2017 Apr 6;12(4):e0174062</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28384172</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2017 Sep;215(4):1516-1532</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28691210</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Elife. 2017 Jul 31;6:</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28758890</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Commun. 2017 Sep 14;8(1):532</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28912547</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2017 Dec 18;69(1):59-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29036447</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2017 Nov 28;68(20):5485-5495</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29145622</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2018 Aug;44:16-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29452903</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2018 Jun 8;360(6393):1126-1129</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29773668</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2019 May 22;10:635</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31191568</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 1995 Nov;15(11):6213-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7565774</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Cell Dev Biol. 1996;12:575-625</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8970738</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1998 Jul 30;394(6692):432-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9697764</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Oregon</li>
</region>
</list>
<tree>
<country name="États-Unis">
<region name="Oregon">
<name sortKey="Tao, Kai" sort="Tao, Kai" uniqKey="Tao K" first="Kai" last="Tao">Kai Tao</name>
</region>
<name sortKey="Arredondo, Felipe" sort="Arredondo, Felipe" uniqKey="Arredondo F" first="Felipe" last="Arredondo">Felipe Arredondo</name>
<name sortKey="Tao, Kai" sort="Tao, Kai" uniqKey="Tao K" first="Kai" last="Tao">Kai Tao</name>
<name sortKey="Tyler, Brett M" sort="Tyler, Brett M" uniqKey="Tyler B" first="Brett M" last="Tyler">Brett M. Tyler</name>
<name sortKey="Tyler, Brett M" sort="Tyler, Brett M" uniqKey="Tyler B" first="Brett M" last="Tyler">Brett M. Tyler</name>
<name sortKey="Tyler, Brett M" sort="Tyler, Brett M" uniqKey="Tyler B" first="Brett M" last="Tyler">Brett M. Tyler</name>
<name sortKey="Waletich, Justin R" sort="Waletich, Justin R" uniqKey="Waletich J" first="Justin R" last="Waletich">Justin R. Waletich</name>
<name sortKey="Wise, Hua" sort="Wise, Hua" uniqKey="Wise H" first="Hua" last="Wise">Hua Wise</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PhytophthoraV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000374 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000374 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PhytophthoraV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:31396242
   |texte=   Tethering of Multi-Vesicular Bodies and the Tonoplast to the Plasma Membrane in Plants.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:31396242" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PhytophthoraV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Fri Nov 20 11:20:57 2020. Site generation: Wed Mar 6 16:48:20 2024